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Abstract

In one space dimension, the phenomenological theory of sedimentation predicts the sedimentation–consolidation behavior of a flocculated
suspension in dependence of two constitutive functions describing its material behavior, the solids flux density (or hindered settling function)
and the solid effective stress. These functions are assumed to depend only on the local volumetric solids concentration. In this contribution,
we review several experimental and theoretical studies of sedimentation in settling columns. We first resume the theories that have been
employed to interpret the experimental measurements and then apply the phenomenological model to the available data. The two constitutive
functions involved are determined from the published concentration, permeability and effective stress data. The mathematical model is
then solved numerically using these functions, and the resulting predictions of settling behavior are compared with the respective authors’
experimental findings and interpretations. In one case, the information obtained from a batch settling experiment is used to simulate
continuous sedimentation. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Batch settling is probably the simplest way to separate
a flocculated suspension into a concentrated sediment and
a clear liquid. Experimental and theoretical studies of this
process have been published for almost a century now, start-
ing with the works by Nichols in 1908 [1], Mishler in 1912
[2] and Coe and Clevenger in 1916 [3], but it was only in
the last 20 years that a rigorous phenomenological theory
has evolved which provides a clear understanding of the
phenomena occurring during the sedimentation in settling
columns and in continuous thickeners. This theory is based
on the theory of mixtures and models a suspension as a mix-
ture of two superimposed continuous media. The modelling
from the mass and linear momentum balances of the com-
ponents. The introduction of kinematic and dynamic consti-
tutive assumptions and a subsequent dimensional analysis
lead in one space dimension to a scalar hyperbolic–parabolic
field equation for the solids volumetric concentration, to-
gether with an algebraic relationship for the excess pore
pressure gradient. The first author’s contribution to this is-
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sue [4] presents this theory in detail, hence it is outlined
very briefly in this paper (see Section 2).

The material behavior of the suspension is described by
two constitutive functions, the Kynch batch flux density
function fbk and the effective solid stress,σ e, which are as-
sumed to depend on the local volumetric solids concentration
φ only and have to be given explicitly on the entire interval
of concentration values from zero to the maximum concen-
tration. Once these functions and initial and boundary condi-
tions are given, the field equation can be solved numerically
to predict the sedimentation behavior of the suspension.

The authors have published several studies of simulated
hypothetical behavior of flocculated suspensions in batch or
continuous ideal thickeners [5–7]. It is the purpose of this
paper to employ published experimental concentration, ex-
cess pore pressure and effective solid stress data to deter-
mine the functionsfbk(φ) andσ e(φ) for each experimental
case, and to use this information to simulate the respective
experiment. The numerical solution is then compared with
the experimentally observed batch settling behavior. In Sec-
tion 3, we present these results.

To demonstrate that the phenomenological theory and the
numerical algorithm are not limited to batch sedimenta-
tion but also apply to the continuous case, we consider the
study of the dynamic behavior of a continuous thickener by
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Nomenclature

Latin symbols
a particle diameter in Eq. (20)
a(φ) diffusion coefficient
C prameter in the Kynch batch

flux density function
e void ratio
fbk (φ) Kynch batch flux density function
f i

bk(φ),

i = 1, . . . , 6 functionsfbk (φ) in different
test cases

fF feed flux
f 1

F , f 2
F steady state values offF (see Table 2)

g acceleration due to gravity
kf permeability given by Eq. (22)
K permeability
K0 permeability under zero effective

stress
KBS permeability in the sense of

Been and Sills [30]
L feeding level height
n parameter in Eq. (19)
pa parameter in Eqs. (13) and (14)
pe excess pore pressure
ps , pf solid/fluid component phase pressures
q volume average velocity
t time
vs, vf solid/fluid phase velocities
vr drift velocity
u∞ parameter in the Kynch batch flux

density function
ũ∞ parameter in Eq. (20)
z height

Greek symbols
α(φ) resistance coefficient
β parameter in Eq. (13)
δ parameter in Eq. (14)
1z spatial discretization parameter
1% solid–fluid mass density difference
1% intermediate density difference
φ volumetric solids concentration
φc critical concentration
φi

c, i = 1, 2,

3, 5, 6 values ofφc used in different
test cases

φ1
D, φ2

D steady state discharge concentration
values see Table 2

φL(t) concentration prescribed atz = L

φ1
L , φ2

L steady state values ofφL, see Table 2
φmax maximum concentration
µf dynamic viscosity of the pure fluid
νf kinematic viscosity of the pure fluid
%(φ) local density of the mixture

%s, %f solid/fluid mass densities
σ e0 parameter in Eq. (19)
σ e(φ) effective solid stress function
σ i

e(φ), i = 1, 2, functionsσ e(φ) in different
3, 5, 6 test cases

Damasceno et al. [8]. These authors used effective stress and
permeability data from a batch settling test for the simula-
tion of continuous thickening. However, their mathematical
approach is slightly different from ours. In Section 4, we
recalculate their example. Conclusions which can be drawn
from our case study are collected in Section 5.

2. The mathematical model

Consider the settling of a flocculated suspension under
the idealizing assumptions stated in [4,7]. Here, we may ne-
glect the effect of viscosity, as justified in a one-dimensional
framework [9–11], and the advective acceleration terms,
since the Froude number of the systems considered here is
small (see [4]). Furthermore, as is shown in [12], the com-
ponent phase pressurespf andps, which are theoretical vari-
ables, may be replaced by the excess pore pressurepe and
the effective solid stressσ e, which are measurable quanti-
ties, by equations stated explicitly in [4].

The effective solid stress,σ e, is assumed to be given as a
constitutive function. We assume thatσ e is constant while
the solid particles are in hindered settling, i.e. while their
volumetric concentration has not yet reached a critical con-
centration or gel pointφc, and that it is a monotonically
increasing function forφ > φc; consequently, we have

σ ′
e(φ) = dσe

dφ

{ = 0 for φ ≤ φc;
> 0 for φ > φc.

(1)

Under certain additional constitutive assumptions, the fol-
lowing set of equations can be derived from the solid and
liquid component mass and linear momentum balances (see
[4,13]):

∂φ

∂t
+ ∂(φvs)

∂z
= 0, (2)

q = q(t), (3)

∂σe

∂z
= −1%φg − α(φ)

1 − φ
vr, (4)

∂pe

∂z
= α(φ)

1 − φ
vr, (5)

where t is time, z the height variable,vs the solid phase
velocity, q = φvs + (1− φ)vf the volume average velocity,
1% = %s − %f where%s and %f are the solid and liquid
mass densities,g the acceleration due to gravity,α(φ) the
resistance coefficient which has to be given as a constitutive
function, andvr is the solid–liquid relative velocity or drift
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velocity. Using the Kynch batch flux density functionfbk(φ)
given by

fbk(φ) = −1%gφ2(1 − φ)2

α(φ)
, (6)

we obtain from Eq. (4)

φ(1 − φ)vr = fbk(φ)

(
1 + σ ′

e(φ)

1%gφ

∂φ

∂z

)
. (7)

Using the definition ofq, it is easy to see that

φvs = qφ + φ(1 − φ)vr. (8)

Thus, in view of (Eq. (7)), Eq. (3) can be rewritten as

∂φ

∂t
+ ∂

∂z

(
qφ + fbk(φ)

(
1 + σ ′

e(φ)

1%gφ

∂φ

∂z

))
,

or as

∂φ

∂t
+ ∂

∂z
(q(t)φ + fbk(φ)) = ∂

∂z

(
a(φ)

∂φ

∂z

)
, (9)

where the diffusion coefficienta(φ) is defined by

a(φ) = −fbk(φ)σ ′
e(φ)

1%gφ
.

Finally, inserting Eqs. (6) and (7) into Eq. (5) yields

∂pe

∂z
= −1%gφ − σ ′

e(φ)
∂φ

∂z
. (10)

Eqs. (9) and (10) form now the field equations from which
φ andpe are determined (see [4]). The functionfbk, which
is in most cases prescribed instead ofα(φ), should satisfy
the conditions

fbk(0) = fbk(φmax) = 0,

fbk(φ) < 0 for 0 < φ < φmax, f ′
bk(0) < 0,

f ′
bk(φmax) > 0 (11)

stated by Kynch [15], whereφmax is the maximum con-
centration. The last condition ensures that batch settling
processes of ideal suspensions, for whichσe ≡ 0 is as-
sumed, terminate within finite time. However, in practice
and for flocculated suspensions for whichσ e, does not
vanish, empirical approaches such as Michael and Bolger’s
[16] generalization

fbk(φ) = u∞φ

(
1 − φ

φmax

)C

, u∞ < 0,

0< φmax ≤ 1, C > 1 (12)

of Richardson and Zaki’s equation [17] are employed, for
which f ′

bk(φmax) = 0 holds. The constantsu∞ andC have
to be determined experimentally.

Eq. (9) is a second-order scalar parabolic equation, which
degenerates forφ ≤ φc, into the first-order hyperbolic
equation of Kynch’s theory and its extensions to continu-
ous thickening. In the context of batch sedimentation, the

type-change interface, whereφ = φc is valid, separates the
hindered settling zone from the compression zone. Its loca-
tion is in general unknown a priori, which requires special
treatments for the mathematical analysis and for the numer-
ical solution, see the contribution by Bürger et al. to this
issue, [13] and chapter 9 of [18] for details. Eq. (10) per-
mits the calculation of the excess pore pressure a posteriori
from the concentration distribution.

Eqs. (9) and (10) are considered in an ideal continuous
thickener (ICT, see [19,20] and Fig. 1 in [18]) of feeding
level heightL. In this simple set-up, the continuous feed is
modeled by a boundary condition atz = L. For example,
we might prescribe the concentrationφ(z = L, t) = φL(t)

for t > 0, whereφL(t) is a given function, although in
a mathematically rigorous sense, this boundary condition
should be reformulated as a set-valued entropy boundary
condition [14].

The volume average velocityq(t) ≤ 0 can be described
by discharge control; settingq ≡ 0 corresponds to a settling
column. This condition is equivalent to prescribing that the
total solids volume flux throughz = 0 reduces to its con-
vective part, i.e.vs = q(t), which can be rewritten as the
boundary condition

fbk(φ) − a(φ)
∂φ

∂z

∣∣∣∣
z=0

= 0, t > 0.

Again, a mathematically strict treatment would require that
we rewrite this condition in a slightly different way (see
[14]).

The field equation (Eq. (9)) together with these initial and
boundary conditions was solved by the finite difference oper-
ator splitting method outlined in [18], see [13] for a detailed
description. The spatial resolution was1z = L/400 in
Figs. 3, 4, 9 and 10;1z = L/2000 in Figs. 5 and 6;1z =
L/1000 in Figs. 7 and 8; and1z = L/800 in Figs. 11 and
12.

3. Comparison with published batch settling
experiments

We selected four different published studies of batch sed-
imentation of flocculated slurries. Table 1 gives an overview
of the experiments, while Fig. 1 presents plots of the func-
tions fbk(φ) andσ e(φ) used in the simulations. These func-
tions are given explicitly below.

3.1. Comparison with CATSCAN measurements of the
settling of a flocculated kaolin suspension

The study starts considering computerized axial tomo-
graphic scanner (CATSCAN) concentration profile measure-
ments performed by Tiller et al. [21,22]. In addition, the
solids pressure, corresponding to the effective solid stress in
this paper, was measured at the bottom of the vessel. Tiller
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Table 1
Overview of the experimental data

Authors Materials Methods L (m) 1% (kg/m3) φ0

Tiller et al., 1992 [21,22] Kaolin Flat D/water CATSCAN 0.16 1562.0 0.05
Bergström, 1992 [27] Alumina/decalin g-ray absorption 0.198 3083.0 0.15
Been and Sills [30], experiment 11 Estuarine mud/water X-ray/transducers 1.802 1689.7 0.02954
Been and Sills [30], experiment 15 Estuarine mud/water X-ray/transducers 0.643 1536.1 0.09231
Dreher, 1997 [34] Kaolin/water g-ray/standpipes 1.19 1560.0a 0.07
Damasceno et al., 1992 [8] Calcium carbonate/water g-ray/absorption 2.00b 1660.0 0.0b

aEstimated.
bUsed in this paper.

and Leu [23] correlated the local solidosity, or solids volume
fraction, φ, and the local permeability,K, to the effective
solid stress by the formulas (in our notation)

φ = φc

(
1 + σe

pa

)β

, (13)

Fig. 1. Kynch batch flux density and effective solid stress functionsfbk(φ) and σ e(φ) determined from data published by (a) Tiller et al. [22]; (b)
Bergström [27]; (c) Been and Sills [30]; (d) Dreher [34]; and (e) Damasceno et al. [8].

K = K0

(
1 + σe

pa

)−δ

, (14)

whereβ, δ andpa are parameters andK0 is the permeability
under zero effective stress, i.e. is at the sediment surface,
see Eqs. (8) and (9) in [24]. It should be noted that these
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equations are only valid in the compression zone. The lo-
cal permeability appears in the modified Darcy equation
(Eq. (10) in [25]), which can be written here as

∂σe

∂z
= −1%gφ − µf (1 − φ)vr

K
(15)

(see Eq. (58) in [26]), whereµf is the dynamic viscosity
of the pure liquid. AssumingK = K(φ), comparing the
right-hand parts of Eqs. (4) and (15) and using the definition
of fbk(φ) yields

fbk(φ) = −K(φ)1%gφ2

µf
. (16)

This formula permits the determination of the Kynch batch
flux density function for the compression zone, identified
with the region whereφ > φc is valid, from permeabil-
ity data. Of course, one could also employ the equivalent
formula

α(φ) = µf (1 − φ)2

K(φ)

for the determination of the resistance coefficientα(φ) from
permeability data.

To obtain constitutive equations for the kaolin used in the
experiments, first an almost stationary concentration pro-
file, measured after 2 days, was considered [21]. After that
time, the sediment is almost at equilibrium and there is no
solid–liquid relative motion, i.e. it may be assumed thatvr
has vanished. Under that condition, Eqs. (4) and (15) reduce
to

∂σe

∂z
= −1%gφ. (17)

If the critical concentrationφc is known or chosen appropri-
ately and attained at a heightzc denoting the sediment level,
then we may assume thatσe = 0 for z ≥ zc. Integrating
Eq. (17) downwards with respect toz, using the measured
stationary concentration profile, will yield data to which an
empirical approach forσe = σe(φ) can be fitted.

Tiller and Kwon [21] compared various choices ofφc
and the corresponding predictions of the maximum effective
solid stress value at the bottom of the settling column with
the measured value, and concluded thatφc = φ1

c = 0.07 was
the best choice for the kaolin suspension. Choosingpa =
0.04 Pa, the exponentβ = 0.2 was obtained in Eq. (13); this
yields the effective solid stress equationσe = 0 for φ ≤ φ1

c
and

σe(φ) = σ 1
e (φ) = pa

[(
φ

φ1
c

)1/β

− 1

]

= 0.4

[(
φ

0.07

)5

− 1

]
Pa for φ > φ1

c . (18)

By a similar method of data fitting, using concentration
profiles obtained after 2000 and 3000 s and again taking

the maximum measured effective solid stress into account,
Tiller and Kwon [21] obtained the parametersK0 = 1.26×
10−11 m2 andδ = 1.24, leading via Eq. (18) to

K(φ) = 8.709× 10−19φ−6.2 m2.

This expression could be inserted into Eq. (16) to obtain an
explicit representation offbk in the compression zone, i.e.
for φ > φc, which could be combined with a second formula
for 0 ≤ φ ≤ φc, the hindered settling zone. This methodol-
ogy has been adopted in some of the next examples. How-
ever, since the permeability values have not been measured
and represent only estimates, we can also use these values
as raw data, transform them to values offbk(φ), and ap-
proximate this set of discrete points by some semi-empirical
function. We choose an approach of Michaels and Bolger’s
type (Eq. (12)) and require that

fbk(0.05)

0.05
= −3.2 × 10−4 m/s,

which is the observed falling velocity of the clear
liquid–suspension interface, or settling rate, according to the
Rankine–Hugoniot jump condition. The final flux density
function is

fbk(φ) = f 1
bk(φ) = −3.082736× 10−4φ(1 − 2φ)21.5 m/s,

0 ≤ φ ≤ φmax = 0.5,

see Fig. 1a and Fig. 2.
Fig. 3 shows the measured concentration profiles com-

pared to our numerical simulation.

3.2. Comparison withγ -ray measurements of a flocculated
alumina suspension

Bergström [27] presented an interesting study of settling
experiments with alumina suspensions. His main objective
was the investigation of the effect of interparticle energy on
the settling process. Therefore, he added to the mixture fatty
acids of five different hydrocarbon chain lengths, which
are adsorbed at the solid–liquid interface. The lengths of
the adsorbed fatty acid molecules determine the distance of

Fig. 2. Batch flux density function determined from permeability calcu-
lations and the clear liquid/suspension interface falling velocity.
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Fig. 3. CATSCAN concentration profile measurements by Tiller et al.
[22] compared with numerical simulation.

closest approach and thus the interaction energy at contact
(see [27]). It was found that an initial concentration of 0.10
would still produce a free-settling zone, therefore initial
concentrations of roughly 0.15, assumed to be the critical
one, were chosen. The absorption byg-rays led to experi-
mental concentration profiles, and the effective solid stress
in a given height was determined in the same way as in the
previous example, namely, by integrating Eq. (17) using an
equilibrium concentration profile. Bergström [27] showed
that the stress curves could be fitted to a power law,

σe(φ) = σ 2
e (φ) = σe0φ

n for φ > φ2
c = 0.15. (19)

Here, we select the ‘intermediate’ example of the addi-
tion of heptanoic acid, for which Bergström [27] found
the exponentn = 4.3 to be suitable; his plot suggests tak-
ing σe0 = 80 000 Pa. Following Auzerais et al. [28], he
suggests employing Brinkman’s permeability formula [29]
modelling the porous medium as a single sphere embed-
ded in an effective medium, which is, in our mathematical
framework, equivalent to

fbk(φ) = f 2
bk(φ) = ũ∞

φ(2 − 3φ)2

3φ + 4 + 3(8φ − 3φ2)1/2
,

ũ∞ = −2a21%

9µf
, (20)

wherea is an average particle radius. Using the data pro-
vided by Bergström [27], namely the (very small) particle
diametera = 2× 10−7 m, the densities%s = 3.96 and%f =
0.877 kg/m3 (we neglect here the small amount of fatty acid)
andµf = 0.0026 Pa s, we obtaiñu∞ = −1.034×10−7 m/s.
Inserting these parameters andφ0 = 0.15 into the formula
for the initial settling rate given by Auzerais et al. [28],
however, showed that the value of̃u∞, was too small in
modulus to describe the observed behavior. We amended
this by replacing this value withu∞ = −1.737×10−7 m/s.
Note that formula (Eq. (20)) is well defined also for 0≤
φ ≤ φc. Since no information on preliminary experiments
with more dilute suspensions of sub-critical initial concen-
trations was published, which would have allowed fixing
values offbk(φ) by using settling rate measurements as in
the previous experiment, we decided to employ Eq. (20)

Fig. 4. g-Ray concentration profile measurements compared with nu-
merical simulation of the corresponding phenomenological sedimentation
model.

with u∞, instead ofũ∞ for the whole range of concentra-
tion values. The functionsf 2

bk(φ) andσ 2
e (φ) are plotted in

Fig. 1b, and the numerical result is presented in Fig. 4.

3.3. Comparison with X-ray concentration and excess pore
pressure measurements of estuarine mud slurries

The paper by Been and Sills [30] is one of the classi-
cal studies of the settling of flocculated suspensions and has
been cited by many authors. Been and Sills performed ex-
periments in settling columns using slurries of water mixed
with real estuarine mud, producing various initial densities.
They also published the mass of soil, here identified with
the dry solid phase, and the initial height of the mixture such
that the effective solid–liquid mass density difference and
the initial solids volume fraction could be calculated. This
shows that the solid material, as a real soil, was slightly dif-
ferent in each experiment.

Been and Sills measured the excess pore pressure by trans-
ducers or standpipes. The advantage of having excess pore
pressure data available is obvious, since then Eq. (5) instead
of Eq. (17) may be used to derive a constitutive relation-
ship forσ e, i.e. it is not necessary to wait until steady state
is reached, in which the excess pore pressure has vanished.
Although the effective solid stress data, presented graphi-
cally by Been and Sills ([30], Figs. 13 and 16), do not sup-
port the concept of choosing one unique set of parameters
for all experiments, we found that qualitative agreement of
the simulations with the measurements could be attained by
approximating their data by settingφc = φ3

c = 1/12 =
0.083, σe(φ) = σ 3

e (φ) = 0 for φ ≤ φ3
c and

σe(φ) = σ 3
e (φ) = 15.56 exp(14.01φ) Pa for φ > φ3

c .

A similar exponential fit was employed by Becker [31]. The
permeability was not measured directly. However, once a
constitutive equation forσ e is chosen, estimates of the solids
phase velocityvs may be used to obtain values ofK(φ) from
Eq. (15). These estimates follow from the ‘Lagrangian paths’
[22] (see also [32,33]) of given sets of particles, which can
be constructed from the succession of concentration pro-
files. For their experiments 10–15, Been and Sills plotted the
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permeability data, in a logarithmic scale, against the void ra-
tio e = (1−φ)/φ. Their definition of permeability, denoted
here byKBS, is related toK(φ) byKBS = K(φ)g/νf , where
νf is the kinematic viscosity of the liquid. For simplicity, we
approximate their cloud of data by a straight line, obtaining

KBS(φ) = 8.4822× 10−9 exp

(
0.6168(1 − φ)

φ

)
m/s.

In view of formula (Eq. (16)), we obtain

fbk(φ) = −1%φ2KBS(φ)

%f
for φ > φ3

c , (21)

where different values of1% have to be used for each ex-
periment.

To show that the phenomenological model predicts the
observed settling behavior correctly, we consider their ex-
periments 11 and 15, for which both experimental density
and excess pore pressure profiles have been published (see
Figs. 5–8 in [30]). The decisive difference between these
experiments is the initial concentration: in experiment 11,
the initial suspension was so dilute that effective solid stress
did not exist initially and that a distinctive hindered settling
zone could form, while the initial concentration in experi-
ment 15 was so high that the solid particles did already form
a network, i.e. the suspension was already in compression
when the experiment started.

Been and Sills’ experiment 7, for which the density mea-
surements have also been plotted as a settling plot (see [30],
Figs. 2 and 3) but for which the pressure measurements
are available for one single time only (Fig. 4 in [30]), has
already been simulated by Bürger et al. [5,7].

Using the density differences given in Table 1, we obtain

fbk(φ) = f 3
bk(φ) = −1.433× 10−8φ2 exp

×
(

0.6168(1 − φ)

φ

)
m/s for φ > φ3

c

for experiment 11 and

fbk(φ) = f 4
bk(φ) = −1.303× 10−8φ2 exp

×
(

0.6168(1 − φ)

φ

)
m/s for φ > φ3

c

for experiment 15. These flux density functions were cut
at their local maximum 0.3084, which identifies this value
with the maximum solids concentration. For 0≤ φ ≤ φ3

c,
we again consider Michael and Bolger’s approach (Eq. (12))
and set1% = 1612.9 kg/m3. The parametersu∞, φmax
(not to be confused with 0.3084) andC were determined in
such a way that the settling rate observed in experiment 11
coincided with the Rankine–Hugoniot condition, i.e. such
that

fbk(0.02954)

0.02954
= −2.93× 10−8 m/s

is valid; that the inflection point is 0.045; and that the value
of fbk given by insertingφ3

c into formula (Eq. (12)) coincides

Fig. 5. Comparison of X-ray concentration measurements of an estuarine
slurry ([30], experiment 11) with numerical simulation of the phenomeno-
logical model. The symbols represent the experimental data. In addition,
the simulated concentration profiles fort = 7 min (a) andt = 1 h (b) are
shown.

with the value obtained from Eq. (21) using the interme-
diate density difference1%. The estimate of the inflection
point was inferred from the shape of the measured concen-
tration profile att = 9.33 h. Multiplying the resulting flux
density function with the respective factors 1689.7/1612.9
and 1536.1/1612.9, we finally obtain the expressions

f 3
bk(φ) = −1.211× 10−4φ(1 − 7.226φ)5.15 m/s

for 0 ≤ φ ≤ φ3
c ,

f 4
bk(φ) = −1.101× 10−4φ(1 − 7.226φ)5.15 m/s

for 0 ≤ φ ≤ φ3
c .

The functionsf 3
bk(φ) andσ 3

e (φ) are plotted in Fig. 1c. Figs. 5
and 6 show our numerical simulations compared with Been
and Sills’ concentration and excess pore pressure data for
experiment 11, while Figs. 7 and 8 show the analogous
results for experiment 15.

Note that the initial height of the suspension was much
higher in experiment 11 (see Table 1) than in experiment
15, and that we plotted only that part of the numerical re-
sults which made comparison with experiment 15 possible.
Furthermore, Been and Sills presented their concentration
measurements as solid lines ([30], Figs. 5 and 6). It may
be assumed that these lines had been obtained by smooth

Fig. 6. Comparison of excess pore pressure measurements of an estuarine
slurry ([30], experiment 11) with numerical simulation of the phenomeno-
logical model. The symbols represent the experimental data.
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Fig. 7. Comparison of X-ray concentration measurements of an estuarine
slurry ([30], experiment 15) with numerical simulation of the phenomeno-
logical model. The concentration profiles plotted in symbols represent the
experimental data.

approximation of raw data, which they unfortunately did
not show. To make distinction between the measured con-
centration profiles possible, we redrew each profile using
different symbols for different times. It should also be
mentioned that Been and Sills used a logarithmic scale
for the mixture density, which we transformed into values
of φ by linear approximation between integer values of
%(φ)g = (φ%s + (1 − φ)%f )g, measured in kN/m3.

3.4. Comparison withγ -ray concentration and excess pore
pressure measurements of a suspension of kaolin in water

Recently, Dreher [34] presented a study of batch settling
of a flocculated kaolin suspension. In addition to concentra-
tion profiles obtained byg-ray absorption, he also measured
the excess pore pressure by ten equidistant standpipes.

In [34], transient effective solid stress data were obtained
in the same way as by Been and Sills [30], which are plotted
against the mixture density. Assuming that the dry material
is of density%s = 1560 kg/m3 as in other kaolin experi-
ments (unfortunately, this value is not stated explicitly), we
conclude from Dreher’s observation that% = 1150 kg/m3

is the critical density, at which the effective stress begins to
increase, thatφc = φ5

c = 0.096 should be chosen. The ex-
perimental data could roughly be approximated by a power

Fig. 8. Comparison of excess pore pressure measurements of an estuarine
slurry ([30], experiment 15) with numerical simulation of the phenomeno-
logical model. The symbols represent the experimental data.

law similar to Eq. (18):

σe(φ) = σ 5
e (φ) = 11

[(
φ

φ5
c

)5

− 1

]
Pa for φ > φ5

c . (22)

Again following Been and Sills [30], estimates of the
permeability were obtained in [34] from the measured con-
centration profiles. The plot of the resulting values of the
quantitykf , in our notation given by

kf = (1 − φ)K(φ)%f g

µf

and also referred to as permeability, against the local density
%(φ) using a logarithmic scale could be roughly approxi-
mated by a straight line. Using formula (16), this leads to

fbk(φ) = f 5
bk(φ) = −4.877× 10−4

× φ2 exp(−45.078φ)

1 − φ
m/s for φ > φ5

c . (23)

The only experimental information available onfbk for
0 < φ ≤ φ5

c could be obtained from estimating the settling
rate, leading to the requirement

f 5
bk(0.07) = −3.632× 10−7 m/s. (24)

We decided to determinef 5
bk as the unique second-order

polynomial defined on [0.07, 0.096] which satisfies Eq. (24)
and connects smoothly with the segment off 5

bk given by
Eq. (23). Similarly, we determined another second-order
polynomial defined on [0, 0.07] vanishing atφ=0 and
connecting smoothly with the first, resulting in

f 5
bk(φ) = {(3.7942φ2 − 0.3175φ) × 10−4 m/s

for 0 ≤ φ ≤ 0.07, (−3.8178φ2 + 0.7482φ

−0.0373) × 10−4 m/s for 0.07 < φ ≤ φ5
c

The functionsf 5
bk(φ) andσ 5

e (φ) are given in Fig. 1d, while
Fig. 9 shows the concentration measurements together with
our simulation (in this case, we preferred to provide sepa-
rate plots for each time, since the measured concentration
data were rather scattered). The measurements and our
calculation ofpe are collected in Fig. 10.

4. Application to continuous sedimentation

In their paper [8], Damasceno et al. simulated the behav-
ior of a calcium carbonate slurry in an ICT. The correspond-
ing constitutive functionsK(φ) andσ e(φ) had been deter-
mined in a similar way as by Tiller and Kwon [21] using
g-ray absorption measurements. Using the approaches (13)
and (14), Damasceno et al. [35] obtained the constitutive
equationσe(φ) = 0 for 0 ≤ φc = φ6

c = 0.1 and

σe(φ) = σ 6
e (φ) = 5.7

[(
φ

0.1

)9.09

− 1

]
Pa for φ > φ6

c .
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Fig. 9. Comparison ofg-ray concentration measurements of a kaolin suspension [34] with numerical simulation of the corresponding phenomenological
sedimentation model. (a)t = 0.052 d; (b) t = 0.312 d; (c) t = 0.87 d; (d) t = 2.13 d; (e) t = 3.91 d; (f) t = 13.27 d.

The resulting permeability was

K(φ) = 1.0 × 10−10
(

φ

0.1

)−9.47

m2

= 3.388× 10−20φ−9.47 m2,

Fig. 10. Comparison of excess pore pressure measurements of a kaolin sus-
pension [34] with numerical simulation of the phenomenological model.
The times correspond to those of Fig. 9.

using concentration values varying between 0.18 and 0.25
([8], Fig. 2). Applying formula (Eq. (16)) leads to

fbk(φ) = f 6
bk(φ) = −5.517× 10−13φ−7.47 m/s

for φ > 0.18;
this expression was cut atφ = φmax = 0.3. The particular
mathematical model proposed in [8] does not include the
hindered settling zone, nor is original experimental infor-
mation available from which the initial settling rate could
be inferred. Therefore, we constructed the remaining part
of f 6

bk(φ), for φ between 0 and 0.18, simply by choosing
Michaels and Bolger’s equation (Eq. (12)) withφmax = 0.3
and determining the parametersu∞ andC such thatfbk(φ)
is differentiable atφ = 0.18, leading to

f 6
bk(φ) = −1.9802137× 10−4φ

(
1 − φ

0.3

)5.647

m/s

for 0 ≤ φ ≤ 0.18.
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Fig. 11. Simulation of the filling up of an ICT and transition between steady states. (a) Settling plot showing the iso-concentration lines corresponding to
the annotated values; (b) the prescribed values ofq(t) during the simulation; (c) the simulated discharge concentrationφ(0, t), compared to the desired
steady state values 0.17 and 0.20; (d) the simulated discharge solids volume fluxfD(t) = q(t)φ(0, t). Parameters are chosen according to Damasceno
et al. [8], see Tables 2 and 3.

The functionsf 6
bk(φ) andσ 6

e (φ) are drawn in Fig. 1e. The
main differences of the mathematical model proposed in [8]
compared with the phenomenological theory used in this
paper, although both emerge from the theory of mixtures,
consists of the neglection of the hindered settling zone and
inclusion of advective acceleration terms, which we have ne-
glected. Damasceno et al. [8] employed their mathematical
model to simulate the filling up of a continuous thickener
and the transition between steady states, and to compare
several operation strategies.

Table 2
Parameters adopted from Damasceno et al. [8], of the steady states considered in Table 3 and Fig. 11

i q = qi (10−7 m/s) φi
D φi

L f i
F (10−7 m/s) zc (m)

1 −5.882 0.17 0.0005083305 −1.0 0.29
2 −5.0 0.20 0.000508561 −1.0 1.11

Table 3
Operating conditions, adopted from Damasceno et al. [8], for the simulation shown in Fig. 11a

Time interval q(t) φL(t) fF(t) Remarks

t ≤ 0 ICT is initially empty
0 < t ≤ t∗ 0.0 0.0005114092 −1.0×10−7 m/s ICT is filled up untilφ (0.005, t) attainsφ1

D = 0.17 at t∗ ≈ 129 h
t∗ < t ≤ 72 h q1 0.0005083305 −1.0×10−7 m/s ICT operates near steady state 1
72 h< t ≤ t ∗ ∗ 0.0 0.0005111792 −1.0×10−7 m/s Sediment level andφ(0, t) increase untilφ(0.005, t)

attainsφ2
D = 0.20 at t∗∗ ≈ 626 h

t > t ∗ ∗ q2 0.0005085611 −1.0×10−7 m/s ICT operates near steady state 2

aThe valuest* and t** are obtained during the computation and are not given beforehand.

We have adopted their parameters in the construction of
our numerical example of filling up and changing of steady
states of an ICT of feeding level heightL = 2 m (see
Fig. 11).

The two steady states considered here and the operating
conditions assumed in our example are given in Tables 2
and 3; for details on steady states refer to [5,7,18].

It should be noted that our numerical result confirms the
conclusion drawn by Damasceno et al. [8] that the filling
up of an ICT at a given feed flux can be performed much



R. Bürger et al. / Chemical Engineering Journal 80 (2000) 105–117 115

Fig. 12. Simulation of the filling up of an ICT keeping the volume average velocity and the feed flux constant. (a) Settling plot showing the iso-concentration
lines corresponding to the annotated values; (b) the prescribed value ofq(t) during the simulation; (c) the simulated discharge concentrationφ(0, t),
compared with the desired steady state value 0.17; (d) the simulated discharge solids volume fluxfD(t) = q(t)φ(0, t). Parameters are chosen according
to Damasceno et al. [8], see Tables 2 and 3.

more rapidly if the vessel is kept closed rather than left
open, such that the volume average velocity takes desired
steady state value; and that similarly, by closing the vessel
during transition between steady states, the sediment level
rises more quickly than ifq(t) is changed directly between
steady state values. The first of these statements is illustrated
by Fig. 12; we started from a thickener full of water as in
Fig. 11 and keptq(t) and φL(t) at the constant respective
valuesq1 andφ1

L during the whole simulation.
It was observed that the sediment built up very slowly, and

even after 2000 h, nearly 3 months, it has not yet reached
the desired steady state.

5. Conclusions

We now discuss the numerical results. Figs. 3 and 4
show qualitative agreement of the numerical simulation
with the experimental concentration profiles. However, the
phenomenological model predicts a distinctive clear liquid-
suspension interface, while the concentration profiles mea-
sured att = 1800 and 3000 s plotted in Fig. 3 indicate that
the supernatant liquid above the bulk suspension is not en-
tirely clear; there is a small amount of particles performing
Brownian motion. This effect seems to be absent in the
measurements given in Fig. 4. This figure also demonstrates

that the mathematical model correctly predicts the transition
of the concentration profiles from concave to convex shape
and that the maximum concentration (for that experiment)
of about 0.35 is predicted accurately. The quality of accor-
dance visible in Fig. 4 is certainly due to the great accuracy
of the measurements by which the constitutive functions
were determined (see [27]).

It seems more difficult to apply the phenomenological
theory of sedimentation, which is based on many idealizing
assumptions, to natural slurries such as the material used by
Been and Sills [30]; the experimental data permitted only
very rough estimates of the functionsfbk(φ) and orσ e(φ).
Nevertheless, we found that the shapes of the concentration
profiles calculated numerically approximated the shapes of
the measured ones remarkably well, as can be seen in Figs. 5
and 7, and that the approximation of the excess pore pres-
sure data measured in Been and Sills’ experiment 15 was
also satisfactory (see Fig. 8). Certainly additional efforts in
determining the constitutive functions more accurately will
still increase the accordance. Fig. 6 indicates that the sim-
ulated dissipation of excess pore pressure is much slower
than the dissipation observed in the experiment. We con-
jecture that this is due to the formation of vertical channels
such as those photographed by Glasrud et al. [36], through
which the liquid flows upwards at an increased rate com-
pared with its flow through the interstices of the sediment



116 R. Bürger et al. / Chemical Engineering Journal 80 (2000) 105–117

layer. The rapid dissipation of excess pore pressure could
also be due to the plastic deformation of the sediment bed at
high loads, i.e. near the bottom of relatively large columns.
The latter effect is also visible in Fig. 5 in the high mea-
sured concentration values near the bottom of the vessel.
Inhomogeneities such as vertical channels, inherent to nat-
ural slurries, are not within the scope of the restriction of
the phenomenological model to one space dimension, and
will probably require a multidimensional treatment, while
the high concentrations near the bottom of the vessel suggest
that the phenomenological theory could still be improved by
allowing an elasto-plastic deformation of the sediment.

Severe inhomogeneities also seem to have influenced
Dreher’s experimental configuration as expressed by the
scattering of his measured concentration data [34], which
are plotted in Fig. 9. Consequently, the simulated (smooth)
profiles only roughly approximate his concentration mea-
surements in the compression zone. However, the simulated
propagation velocity of the sediment level agrees with the
experimental observation. We note that the inclined straight
sections of the simulated concentration profiles in Fig. 9b
and c represent rarefaction waves, and are due to the simple
modeling of fbk by second-order polynomials. Again, as
shown in Fig. 10, the simulated excess pore pressure values
corresponding to Dreher’s experiment near the bottom of
the vessel, and for large times, are much higher than the
measured values. The interpretation of this discrepancy is
probably the same as for Been and Sills’ experiment 11.

The experimental information available in the last study
considered, the paper by Damasceno et al. [8], are plots of
the data from which the effective solid stress and permeabil-
ity functions were determined (their Figs. 1 and 2). More-
over, it is not evident to which feeding level height their
simulations of discharge concentration and sediment height
apply. However, the simulations presented in Figs. 11 and 12
agree qualitatively with their results, and show that consti-
tutive functions obtained from batch tests can be employed
successfully to simulate continuous thickening by the phe-
nomenological model.

We found that all examples presented confirmed that the
phenomenological theory is sound and predicted correctly
the sedimentation–consolidation behavior of many floc-
culated suspensions, whose variety was expressed by the
ranges of parameters presented in Table 1 and Fig. 1. At
the same time, however, it seems desirable to have more
additional experimental data available. The determination
of fbk in the hindered settling zone was performed here only
very vaguely, and should for a rigorous treatment be based
on a series of batch settling tests of dilute suspensions at
sub-critical initial concentrations.

The available number of experimental studies of batch
sedimentation is quite large, and it would certainly be in-
teresting to consider the results by Blake and Colombera
[37], Comings [38], Dell and Keleghan [39], Font [40], Font
et al. [41], França et al. [42], Free [43], Gaudin and Fuer-
stenau [33], Kearsey and Gill [44], Scott [45,46], Shirato

et al. [47] and Work and Kohler [48], which are not included
here, as additional test cases for an extension of this study,
although the older works present experimental batch set-
tling results without suggesting equations that could describe
the observed behavior. The phenomenological model will
also be applied to experiments currently being performed by
Garrido [49] under the second author’s guidance.

In contrast to this vast body of knowledge, only few papers
presenting experimental results of the behavior of floccu-
lated suspensions under semi-batch or continuous flow con-
ditions (Eklund and Jernqvist [50], Font and Laveda [51])
have been published. This is certainly due to the fact that
continuous sedimentation experiments are much more diffi-
cult to perform than batch tests.

Acknowledgements

The preparation of this paper and its presentation at the
conference were made possible through support by the
United Engineering Foundation, by Fondef project DI97-
12042 at the University of Concepción, and by the Sonder-
forschungsbereich 404 at the University of Stuttgart.

References

[1] H.G. Nichols, Trans. Inst. Min. Met. 17 (1908) 293.
[2] R.T. Mishler, Eng. Min. J. 94 (1912) 643.
[3] K.S. Coe, G.H. Clevenger, Trans. AIME 55 (1916) 356.
[4] R. Bürger, Chem. Eng. J. 80 (2000) 177–188.
[5] R. Bürger, M.C. Bustos, F. Concha, Int. J. Miner. Process. 55 (1999)

267.
[6] R. Bürger, F. Concha, in: H. Hoberg, H.V. Blottnitz (Eds.),

Proceedings of the 20th International Mineral Process Congress,
vol. 4, Aachen, Germany, 21–26 September 1997, GDNIB,
Clausthal-Zellerfeld, 1997, p. 91.

[7] R. Bürger, F. Concha, Int. J. Multiphase Flow 24 (1998) 1005.
[8] J.J.R. Damasceno, H.M. Henrique, G. Massarani, in: Proceedings

of the Third Meeting of the Southern Hemisphere on Mineral
Technology, São Lourenço, Minas Gerais, Brazil, 1992, p. 675.

[9] S. Whitaker, Transp. Porous Media 1 (1986) 3.
[10] K.A. Landman, L.R. White, Adv. Colloid Interf. Sci. 51 (1994) 175.
[11] R. Bürger, W.L. Wendland, F. Concha, Z. Angew. Math. Mech. 80

(2000) 79.
[12] F. Concha, M.C. Bustos, A. Barrientos, E. Tory (Eds.), Sedimenta-

tion of Small Particles in a Viscous Fluid (1996) Computational
Mechanics PublicationsSouthampton.

[13] M.C. Bustos, F. Concha, R. Bürger, E.M. Tory, Sedimentation and
Thickening (1999) Kluwer Academic PublishersDordrecht, The
Netherlands.

[14] R. Bürger, W.L. Wendland, Math. Methods Appl. Sci. 21 (1998) 865.
[15] G.J. Kynch, Trans. Faraday Soc. 48 (1952) 166.
[16] A.S. Michaels, J.C. Bolger, Ind. Eng. Chem. Fund. 1 (1962) 24.
[17] J.E. Richardson, W.N. Zaki, Trans. Inst. Chem. Eng. (London) 32

(1954) 35.
[18] R. Bürger, S. Evje, K.H. Karlsen, K.-A. Lie, Chem. Eng. J. 80 (2000)

91–104.
[19] M.C. Bustos, F. Concha, W.L. Wendland, Math. Methods Appl. Sci.

13 (1990) 1.
[20] P.T. Shannon, E.M. Tory, SME Trans. 235 (1966) 375.
[21] F.M. Tiller, private communication, December 1997.



R. Bürger et al. / Chemical Engineering Journal 80 (2000) 105–117 117

[22] F.M. Tiller, N.B. Hsyung, Y.L. Shen, Proceedings of the Fifth World
Congress on Filtration 2 (1991) 80Soc. Française de FiltrationNice,
France.

[23] F.M. Tiller, W. Leu, J. Chin. Inst. Chem. Eng. 11 (1980) 61.
[24] F.M. Tiller, W. Chen, Chem. Eng. Sci. 43 (1988) 1695.
[25] F.M. Tiller, AIChE J. 27 (1981) 823.
[26] R. Bürger, W.L. Wendland, F. Concha, in: K.P. Holz, W.

Bechteler, S.S.Y. Wang, M. Kawahara (Eds.), Proceedings of the
Third International Conference on Hydro-Science and Engineering,
Cottbus/Berlin, Germany, August 31–September 3, 1998, The
University of Mississippi, Carrier Hall, MS, USA, 1998, p. 222
(abstract, full length paper published on CD-ROM).

[27] L. Bergström, J. Chem. Soc. Faraday Trans. 88 (1992) 3201.
[28] F.M. Auzerais, R. Jackson, W.B. Russel, J. Fluid Mech. 195 (1988)

437.
[29] H.C. Brinkman, Appl. Sci. Res. A1 (1947) 27.
[30] K. Been, G.C. Sills, Géotechnique 31 (1981) 519.
[31] R. Becker, Engineering thesis, Department of Metallurgical Engi-

neering, University of Concepción, 1982.
[32] R. Bürger, F. Concha, K.-K. Fjelde, K.H. Karlsen, Powder Technol.,

in press.
[33] A.M. Gaudin, M.C. Fuerstenau, Trans. AIME 223 (1962) 122.
[34] T. Dreher, Preprint 97/34, Sonderforschungsbereich 404, University

of Stuttgart, 1997.

[35] J.J.R. Damasceno, R. Souza, G. Massarani, in: Proceedings of the
XIX Encontro sobre Escoamento em Meios Porosos, Campinas, São
Paulo, Brazil, 1991.

[36] G.G. Glasrud, R.C. Navarrete, L.E. Scriven, C.W. Macosko, AIChE
J. 39 (1993) 560.

[37] J.R. Blake, P.M. Colombera, Chem. Eng. Sci. 32 (1977) 221.
[38] E.W. Comings, Ind. Eng. Chem. 32 (1940) 663.
[39] C.C. Dell, W.T.H. Keleghan, Powder Technol. 7 (1973) 189.
[40] R. Font, Chem. Eng. Sci. 46 (1991) 2473.
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